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A Force/Position Control for Two-Arm Motion Coordination and
Its Stability Robustness Analysis

Hyeung-Sik Choi* and Paul I. Ro**
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This paper presents a motion coordination of two robot manipulators coordinating an object.

To coordinate the object, a force/position control scheme in a mode of leader/follower is
devised. The dynamics of the object is incorporated into the dynamics of the leader arm, which

yields a reduced order model of two arm system. In order to regulate interaction forces between

two arms, the dynamics of the follower arm is expressed as force dynamic equations such that
a novel direct force control scheme is devised. For the devised control scheme, a numerical

simulation is shown. Under the coupling forces between two arms and two different type of

bounded input disturbances, boundedness and asymptotic stability results based on a proposed
Lyapunov function are shown. Also, a sufficient condition for a stability robustness is derived

based on the Lyapunov approach.

Key Words: Force/Position Control, Direct Force Control, Boundedness, Asymptotic Sta­

bility, Stability Robustness, Lyapunov Approach

1. Introduction

One of the objectives in motion coordination of

two interacting robot arms is to develop a control
scheme such that many tasks in assembly, repair,

and inspection that require multiple robot arms

can be performed in a coordinated manner. A
multitude of challenging research issues arise
from multi-arm coordinated control e. g.( Nakano

1974; Luh 1987).
As one of control modes, a master /

slave(leader/follower) mode of control is used for

a cooperative motion coordination of two robot
arms(Ahmad 1989; Ishida 1977; Ro 1989a; Suh
1988 and Tarn 1986). In the research by

Ishida(Ishida 1977), the master arm is controlled
by a PH> controller with a feedforward compen­
sator, and the slave arm is controlled to follow

the master arm by the force feedback from the
wrist sensor. Another control method based on
the master-slave control mode is shown by the
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linearlization(Tarn 1986). A dynamic coordina
tor generates control action according to the
relative position, velocity, and/or relative force
errors between two arms where a linearlization

scheme is applied. With additional degree-of­

freedom allowed to the slave arm by changing its
position, another master-slave mode of control is
devised(Suh 1988). An application of master­

slave mode of control to welding is shown with
several other issues(Ahmad 1989). Another

leader/follower control approach is presented
with a reference model structure(Ro 1988a) where

the leader arm is directed according to a pre­
scribed reference model system while the follower
arm follows via interacting force feedback.

Aside from the master/slave mode of control, a
hybrid position/force control method is devised
where the leader arm is coordinated to uncon­
strained directions while the force control is
applied to constrained directions(Hayati 1986,

Uchiyama 1988).
One of the important issues in the control of

robot manipulators is stability. The small gain
theorem(Desoer 1975) is used as a tool to test the

stability and robustness of robot manipulator
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dynamics. One of the early applications of the
theorem to robotic arms is shown(Spong 1984).

In this paper, based on linearization of the robot
dynamics with bounded model uncertainties, etc.,

the resulting error dynamics are guaranteed to be

uniformly bounded. The previous work IS

extended to an n-link robotic manipulator using

a multi-loop versIOn of the small gain
theorem(Spong 1985). Based on the small gain

theorem, several generalized stability analyses, e.

g., nonlinear time domain, frequency domain, etc.
on the closed-loop robotic system IS

shown(Kazerooni 1987a). The work is extended

to a two-arm robotic system where several gene­
ralized two-interacting robots are modeled, and

their stability is studied(Kazerooni 1987b). Also,

robustness conditions for the coupled dynamic
system are derived and tested in depth for various

types of bounded disturbances(Ro 1989b).

Another approach to the stability of robot
manipulator dynamics is shown by the Lyapunov
method. The stability of robotic systems with high

nonlinearity and strong coupling between joints
is addressed(Arimoto 1989), where the asymptotic

stability of the system with a simplified PD or
PID controller is guaranteed by the Lyapunov's

Second method. In a two-arm system, a control

law based on a stability condition via the
Lyapunovs' Second method that has zero steady

state errors is shown(Arimoto 1987). Aside from
the robotic area, an approach to the convergence

of certain secolld order differential equations is
shown by a Lyapunov method(Ezeilo 1966). A
global uniform ultimate boundedness stability

result of a system based on the properties of a
Lyapunov function is shown(Corless 1981). Also,

an approach to show the asymptotic stability of a
certain nonlinear n:tardell system is presen­
ted(Chukwu 1987).

As shown above, many control schemes rela­
ting to different issues are introduced in the area
of two-arm robot control. Also, some studies of
stability and robustness in robotic system are
shown. In this paper, to our knowledge, the
expression of the follower arm dynamics as a
force dynamics and a formation of a direct force

controller design are a novel approach. Also, a

classification of two different type of input distur­
bances and a choice of a Lyapunov function are

novel.

2. Two-Arm Dynamics

The dynamic equations for the coordination of

a two-arm system are derived(Ro 1990) in which

the object dynamics are treated, independently. In
this paper, the dynamics of the object are incorpo­

rated into that af the leader arm and considered
as a portion of the robot arm dynamics. There­

fore, the 3n x I size of two-arm dynamic systems

are reduced to a 2n X I size of dynamic systems.
In this paper, for convenience, the leader arm is

called arm b and the follower arm is called arm a.
The equations of motion for the two arms coor­
dinating an object can be expressed as the follow­
ing:

Ha(qa)i/ a+ Ca(qa, qa)= ra+ II(qa)Fa (I)

Hb(qb)i/b+Cb(qb, qb)=rb+!l(qb)Fb (2)

where qa( qb) is the n X I joint angle vector for

arm a( arm b); rae rb) is the n X I joint torque
vector for arm a(arm b); Ha(Hb) is the n X n

inertia matrix associated with arm a(arm b) ; Ca

(Cb ) is the nonlinear force vector of size n X I

including the gravity term; and laUb) is the n X

n Jacobian matrix of arm a(arm b). Fa(Fb) is an
n X I vector representing the forces and the
moments at the point of interaction between arm

a(arm b) and the object. Similar expressions for
the dynamics of two-arm systems have been used
by(Unseren 1990) and by other~. The equations of
motion for the object can be expressed as the
following:

where M o is an n X n inertia matrix of an object;
Qo is an n X I nonlinear force vector; and xo is
an n X I vector representing the position and the
orientation of the object center in the inertial

space. The n X n matrix La(Lb ) represents the
transformation matrix associated with a finite
length between the center of the object and the
interaction point a( b). The object is assumed to

be rigidly grasped by arm b and there is no force
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(8)

(12)

sensor on arm b. The arm b and the object are
kinematically related such that the velocity and
acceleration of the mass center of the object is

expressed in terms of the joint coordinates of
robot arm b by the Jacobian matrix fb as the
following:

i o=LbIXb=Lblfbq b'
X'O=Lbl!bqb+Lbljbqb+Lbl!biib (4)

where Xb is the velocity of the end effector of arm

b in the task coordinate, and which is i b = [vt,
wtY. Vb and alb are the 3 X I velocity vector and
the 3 X I angular velocity vector of arm b. The

object dynamics are expressed in the joint space
with Eq. (4) as

MoG( q b' ifb) + QOb( q b' qb)
= - L~Fa- LbFb (5)

where

G( q b' ifb)=LbTfbq b
+LbTjbqb+LbTfbiib,

and QOb represents Qo in the joint coordinates
of arm b. Expressing Eq. (5) with regard to

interacting force F b and substituting it into Eq.
(2) yield

Fb=-LbTMoG-LbTQob-LbTL~Fa (6)

The dynamics of the object are incorporated
into the: dynamics of arm b by substituting Eq. (6)
into Eq. (2).

lI: ifb= fb+ COb - rFa (7)

where H:=Hb+flLbTMoLbTfb' r=flLbTL~,

and
COb = - flLWOb- Cb- flLb TMo

X (Lblfb +L bTj b) q b'

and HI~ represents the inertia matrix of arm b
dynamics incorporating that of the object; Cob
represents the nonlinear force vector of arm b
dynamics incorporating that of the object; r rep­
resents the Jacobian matrix reflecting the interact­
ing force Fa in the joint space of arm a to arm b.

3. A J5'orce jPosition Controller Design
for a Two-Arm Motion Coordination

3.1 A position control of leader arm via a
computed torque method

A computed torque method is proposed to

achieve position control of arm b. The controller

fb for arm b dynamics is composed as

fb=fl:(qdb- KdbE- KpbE)
-- Cob +Db( t )

where E = qb - qdb( t ) : qdb(t) is the desired joint
angle vector; fl: is an estimate of the inertia

matrix of arm b ; COb is a feedforward estimate of
the nonlinear force vector of arm b dynamics and

the object dynamics; Db(t) is a bounded input

disturbance; Kdb and K pb are (n X n) derivative
and proportional gain matrix, respt:ctively. Ap­

plying the control fb to Eq(7) yields

ifb= H:-1{fl:( iidb - KdbE -- KpbE)
-- COb +Db( t )+ COb - rFa} (9)

Suppose that all the states and parameters of

arm b are perfectly known such that H: = fl:
and COb = COb are satisfied, then arranging Eq.
(9) yields the following error dynamics as

E+ KdbE+ KpbE= - H:-1yFa (10)

where Fa represents the interacting force vector

between arm a and arm b. In the error dynamic

Eq. (10), the interacting forcing term - H:- 1 rFa
disturbs the error dynamics. Therefore, by regulat­
ing the interacting forces, a desirable motion
coordination is achieved. In order to regulate the

interacting forces, the dynamics of arm a are

expressed as force dynami~ equations.
3.2 A force regulator for follower arm via a

computed torque method
In order to express the arm a dynamics in terms

of force, the arm a dynamics expressed in the

joint space must be expressed in the task space

beforehand. The joint space can be mapped to the
task space by the Jacobian matrix as

qa=f;;li a, ifa=j;;lia+J,~IXa (II)

where it is assumed that the Jacobian matrix is
not singular such that there always exists an

inverse Jacobian matrix. Substituting Eq. (II)

into Eq. (I) and arranging it yields the following

dynamic equations,

xa= faH;;I( fa+ fIFa- Ca)
- faj ~-lia

Eq. (12) represents the dynamics of arm a
interacting with arm b where the acceleration and
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(17)

the velocity of the arm a dynamics are expressed
in the task space. The gripper and force sensor are

assumed not very stiff such that the interacting
force can be expressed by the position differences

of the end points between arm a and b in the task

space as

(13)

assumption of Jafl;;l = JaH;; I and Ca=Ca,
then the closed-loop force dynamic equations of
arm a which regulate the interacting force Fa are

obtained as

Fa +KdaFa+KpaFa
= - KppJb( q·db - KdbE - KpbE

+ P(qa, qb, qb)+ DaU».

Fig. 1 Dual-arm system

4. Numerical Example

In this numerical example, the motion coordi­
nation of the two-arm system is simulated. The

force/position control is applied to the system

whose parameters are perfectly known. Dual three

degree-of-freedom planar arms are used with a
point mass at the center of each arm, which is
shown in Fig. I. The dimensions of the arms are

ARM 0.

L3

OBJECT

L3

ARM b

where P(qa, qb, qb)=-(jb+Jaj;;IJb)qb. For
the follower arm, in order to regulate the interac­

ting forces between two arms, a force control

based on a computed torque method is used. This
force control scheme is based on the information

of the force and its derivative. The control scheme
damps out the chattering which usually occurs

when only a force feedback control is used. In

control of the two-arm system, the gains for Eqs.

(10) and (17) can be designed appropriately such

that the interacting forces are regulated. In this
way, the interacting forces are eventually regula­

ted to zero in error dynamics. Therefore, arm b
dynamics become independent of arm a dynamics

such that a good motion coordination is achieved
with dynamic decoupling. To validate the devised
control scheme, a numerical example is shown by

dual three degree-of-freedom planar arms.

Fa = KppJaH;;I( ra+JIFa- Ca)

- KppJaj ;;IKpl/ Fa
-Kpp(Xa+Jaj;;IXb). (15)

In the open-loop Force dynamics in Eq. (15),

there is a coupling term including the second

derivative of Xb' which can be expressed in the

joint space by the Jacobian relation as Xb=Jbqb
and Xb= j bq b+ j bQ'b· In this way, the second
derivative term Xb can be expressed by the second
derivative of the joint angles of arm b. With the

assumption of H: = fl: and COb = COb, the sec­
ond derivative of the joint angles in Eq. (15) is

expressed in the first order states by the following

relation iib= Q'db- KdbE- KpbE+ Db(f)- yFa·
In the force dynamic equations of arm a, the

interacting force Fa in the closed-loop arm b
dynamics can be regulated by a direct force con­
trol scheme. A controller is designed as

ra= -(j aF/;;I)-IKiJ{(KpfFa
+ KdfFa)- Jaj ;;lKptiFa+KppJbyFa}

- JJPa+ Ca+ Da(t) (16)

By substituting the above equations into Eq.

(12) and arranging the equations, the force

dynamic equations for arm a are expressed as

where K pp is an n X n diagonal stiffness gain
matrix of sensor and gripper. Also, in Eq. (12),

the velocity and acceleration of arm a in task
space can be expressed by the first and the second

derivative of force vector, respectively as

xa=xb+KiJFa, xa=xb+Ki/Fa,
Xa= Xb+ Kip1Fa. (14)

where Kpf and Kdf are n X n proportional and
derivative gain matrix, respectively; Ca is a feed­
forward compensating term of the nonlinear force
vector of arm a dynamics; and D a( t) is a boun­
ded input disturbance. Applying the control in

Eq. (16) to Eq. (15) and arranging it with the
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Table 1 Dimension of dual-arm system FORCE/PosmON CONTROL

AmI,Obj. Len. of arm Mass Inertia

LI lim) 2 kg 0.2 kg

L2 lim) 2 kg 0.2 kg

L3 0.5(m) 1 kg 0.1 kg

Le 0.135(m) 0.5 kg 0.04 kg

""u
'"1:'

o

F.

Fy

Fz

4

FORCE/PosmON CONTROL

KFD-l, KFP=2. KD=10, KP-15

Fig. 2 Force/position control with overdamped
gains

KFD= 1, KFP-25. KD-l0. KP•• 25

Fig. 3 Force/position control with critical-damped
gains
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initially excited interacting forces are regulated
with a transient mode for a short period of time
though it shows fast response. Also, the dynamics

of arm b are affected by the transient mode of
interacting forces, but the command following of
arm b is achieved in a short time.

According to the numerical simulation results,

it is shown that the proposed control schemes

also shown in Table I. In the simulation of the
force-position control scheme, the initial and the

final position of the center of the object in the

task space are given as:xJi}=1.346(m), yJi}
=0, and xJf} = 1.8(m), yJf}=O. For the desir­
ed input dynamics of arm b, a joint space scheme

is applied with cubic polynomials. The computed

torque: method is applied to coordinate the

dynamics of arm b to follow the dynamics of the

desired system. The force control scheme based

on a computed torque scheme is applied to regu­
late the interacting forces such that the dynamics

of one arm is decoupled from that of the other. In

control of the system, arm b is coordinated along

the X -axis. Initial force excitations are 20

(Newton) along F _x and 25(Newton) along F _yo

Also, the diagonal stiffness of the force sensor and

gripper are lOO(Newton/m). In the plots of the

result5. of the numerical examples, the upper plots

represent the regulation of the interacting forces

and the lower plots represent the motion coordi­

nation of arm b in the task space.
In Fig. 2, the overdamped feedback gains of the

controller are selected such that the initially
excited interacting forces are not regulated to zero

within a short time. The dynamics of arm b is

affecte:d by the interacting forces such that arm b
cannot follow an input command within a short
time. In Fig. 3, the control gains are critically

designed such that the interacting forces are
regulated to zero in a short time while the posi­
tion of arm b is controlled to follow the desired

input command in a short time. As a result, the
dynamics of both arms is decoupled such that the
controller shows a good motion coordination of
the system. In Fig. 4, underdamped feedback

gains of the controller are designed such that the
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exhibit a good motion coordination of the dual­
arm system with appropriate control gains. As a

result, the decoupling of the dynamics between
arm a and arm b are achieved. However, with

inappropriate feedback gains, the unstable system

response is shown as in Fig. 5 such that an

analysis of stability robustness is required.

FORCE/PosmON CONTROL

5. A Stability Analysis of the Closed­
Loop Two-Arm Dynamics

The stability of the closed-loop two-arm

dynamic system is not guaranteed due to the
coupling forces. For this reason, general condi­

tions to guarantee the stability of the closed-loop
two-arm dynamic system are required. Rewriting

the closed-loop two-arm dynamics in Eqs. (10)

and (17) as 2n X 1 matrix equation yields
20 _F.

ry
-.-. Fz

where

X+CX+CX=Q( t, X,X) (18)

Fig. 4

~ 1
I

>-

Fig. 5

KF'D-O.4. KF"P-20. KO-.3. KP-"O

Force/position control with underdamped
gains

tDRCE/PosmON CONTROL

_ Desirea

--- Actual--------------

4

KF'D-O.l. KF"P-O.04. KO-O.l. KP.O.05

Force/position control with inappropriate
small gains

and X is the 2n x I vector. C and C are the 2
n x 2n diagonal matrices. In the closed-loop two­

arm system, there is a nonlinear coupling term Q
(t, X, X) between arm a and b. The dynamics of
each arm are assumed to be affected by only the

coupling forces instead of other forcing terms
such as compensation errors or model uncer­

tainties, etc.. Under this condition, a stability

robustness analysis is shown for the linearized

two-arm dynamics with nonlinear coupling

forces.

5.1 Theorem of the stability of the closed­
loop system

As an earlier work, an approach to the conver­

gence of certain second order differential equation

is shown by the Lyapunov method(Ezeilo 1966).

Let E 2n denote the real Euclidean 2n dimen­
sional space. Its Euclidean norm is denoted by

Ilxll=(XTX)1/2. The problem here is to deter­
mine the conditions on the proportional and
derivative feedback gains C and C with two
conditions on the coupling forces Q such that

asymptotic stability or boundedness of the cou­
pled two-arm dynamics are guaranteed.

Suppose that

( i ) the function Q( t , X, Y) including cou­
pled forces and input disturbances are upper

bounded for T - To < (J as
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for some constant ,.13 >0 whose magnitudes can be

estimated with (19) as

v =<Y+CX, -CY-GX+Q(.)
+CY)

Applying Schwarz's inequality to estimate the

remaining term in the expression V in Eq. (22)

yields

sed as Q(.) and Q( t , 0, 0) is expressed as Q'(.).
Differentiating the Lyapunov function of Eq. (21)

yields

(27)

(25)

(23)

1<2 Y +CX, Q(.)I
~MIIXII +11 YIDQ(.)II

V~ - ( ,.leg - 2,.12,.13) II XI12

-( Ac- 2A2A3)11 YI12

+A4<11XI12 + II y 2
)1I2.

where Ame is the largest eigenvalue of C matrix

such that A3=max(2, Ame>. With the above esti­
mates, the inequality can be expressed with the

assumption of the boundedness of the disturbance
term Q( t , X, Y) in Eq. (20). In Eq. (26), ,.14=

21/2,.1311 Q'II. Thus, the inequality is achieved by
putting all the estimates of the various terms in
Eqs. (24, 25, 26) into the expression for V in Eq.
(22) as

1<2 Y +CX, Q(.)I
~MIIXII+II YIDQ(.)II
~MIIXII+II YII){Aillxll+11 YIIHI12Q'11}
~2A2MllxI12+11 Y112)

+A4(llxI12+11 Y112)112 (26)

+<Y, -CY-GX+Q(.»
+2<GX, Y)

=<CX, GX)-< Y, CY)
+<2 Y + LA, Q(.) (22)

where Ae and Ag are the least eigenvalues of

matrix C and G respectively. Also, ,.leg =A"Ag >0

because C and G are defined as diagonal positive
definite matrices. In a similar way, the second

term of Eq. (22) is estimated as

<Y, CY)=<CY, Y);;::Acll YI12 (24)

The estimate of the first term in the right hand

side of Eq. (22) is

<CX, GX)
=<CGX, X);;::AcAgIIXIIZ

=Acg11X112

IIQ( t, X, Y)II~Aillxll+11YID
+IIQ( t, 0, 0)11 (19)

THEOREM 1.

With assumption ( i ) and (ii), IIXII --> 0 and

II YII --> 0 for all sufficiently large t·
THEOREM 2.

With assumption ( i ) and (iii), IIXII and II YII
are upper bounded with respect to a ball centered

at 2n and 2n dimensional spaces, respectively.

In ( ii ), the square norm of Q( t ,0,0) is upper

bounded such that l T

IIQ( t, 0, 0)11 2dt<=. In

theorem I. and 2., there exists a constant Az > 0

whose magnitude depends only on ,.12' Co and G
such that if ,.12~ A2, asymptotic stability or boun­

dedness of X and Yare obtained.
5;.2 Proof of the theorem 1.

For the proof of the asymptotic stability, Eq.

(18) can be expressed as

X=Y,
Y=-CY-GX+QU, XX) (20)

Also, a Lyapunov function V = V(X, Y) is
chosen as

2V=<Y+CX, Y+CX)
+< Y, y)+2<GX, X) (21)

Here the Lyapunov function V(X, Y) is a

convex function and positive scalar because the
matrix G is defined as positive definite. In addi­
tion to the positive quantity of the Lyapunov, an

estimate for V=d/dtV(X( t), Y( t» corres
ponding to any solution (X, Y) of Eq. (20) is

required. For convenience, Q( t , x, i) is expres-

uniformly in t where an appropriate ,.12> 0 is
constant; To is the initial time, and (J is a suffi­

ciently large time duration satisfying above boun­

dedness.

( ii) the input disturbances are not consistent
over sufficiently large time T such that the time

dependent function is upper bounded as IIQ( t , 0,

0)II::;:c1 in( i ) for O~t~ Tf <T, where C1 is a
finite constant, T j is a finite time and T is a

sutliciently large execution time.

(iii) the input disturbances are consistent over

finite time T but upper bounded as II Q( t , 0, 0)

~ Qmax for O~ t ~ T, where Qmax is a finite con­
stant.
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AdllxllZ+11 yIIZ):s::( y, Y)+2(GX, X)
:S::AI4(IIXllz+11 ylj2)

All(IIXIIZ+11 yIIZ):s::< y + ex, y +ex)
:S::AdllxIIZ+11 ylIZ)

where All and ..lIZ are positive and are related to
the e matrix. In a similar way, the rest of the

terms can be estimated as

(33)

6. Conclusions

Solving the above inequality for V yields

V( t) s: e-r,t[ er,~ V(~)

+ DI[tllQ(s, 0, O)jl2e r,Sds] (34)

A reduced order model of the two-arm system
dynamics is derived such that the dynamics

becomes computationally feasible. Follower arm

dynamics is expressed as a novel force dynamic
equations which are appropriate for a direct force

control with proportional and derivative gains.

[=IIQ(t, 0, O)IIZdt <=
the above inequality satisfies Ilxllz+11 yliZ --> 0

as t --> = which requires Ilxll --> 0 and II vii --> 0
as t --> = E. O. F

5.3 Proof of the theorem 2
With the assumption ( i ) and (iii), the consis­

tent time dependent disturbances are upper

bounded such that II Q( t ,0, 0)11 < Qmax' Note that
Qmax is a finite constant. In Eq. (28),

17(X, y):s:: -2As<IIXllz+11 YIIZ)
+ 21/ZA3QmaAIIXliz+II ylj2)112

s: -2AsZ +21/zA3QmaxZ (35)

where ZZ=IIXllz+IIYllz. If Z<A3Qmax/(2 11ZAs)
which is Ilxllz+llyllz<(A3Qmax/(21/ZAs»Z, V is
positive, then, V(X, y) increases such that X
and y increases. At a certain region, Z >A3Q,!,ax/
(2 11ZAs) becomes such that V is non positive and
V(X, y) decreases. The repeating process
implies that X and y bounded by finite con-
stants. E.O. F

Rewriting the above inequality by the mean­

value theorem for integrals with ~< tl < t yields

Ilxllz+ II yllzS:(l/al)[e-r,tAI

+ Dle-r,(t-td[til Q(s, 0, O)llzds].

where Al = er,~ V(~). With the stated condi­

tion( ii ) in the theorem,

0; and if DIIQ'(.)II > 7z VlIZ then, with the previ­
ous equation, M:s:: V0/Z)DIIQ'(.)II=DzIIQ' II (.)llz/
7z such that DI= DZ

/ 7z. Rewriting (32) yields

(29)

(28)
17:S:: - 2As(llxllZ+ II ylIZ)

+A4(IIXllz+11 YIIZ)lIZ

al(IIXIIZ+11 Yin
:s:: V:S::az(IIXIIZ+11 ylIZ)

where al=All +AI3 and az =..lIZ+AI4 +..lIS' Rewrit­
ing Eq. (28) with Eq. (29) yields

17:S:: -2(As/az) V + (A4/al) VlIZ (30)
Let D=21/Z(A3/al) and 7z=As/az; recall that A4

=21/zMIIQ( t, 0, 0)11), then the above equation
can be expressed as

17+ 7z V s: - 7z V +DIIQ'(.)II VI/Z (31)

Eq. (31) can be expressed as

17+7zV:S::M (32)

where M = V0/Z)(DII Q'(.)II- 7z V 1I2). From the
definition of M, the following relationship can be

obtained: M s: Dill Q'(.)llz, for all t?:.~, DI =DI

(D, rz) >0 is constant, which is proved by the
following process: If Q and V are such that

DIIQ'(.)II < 7z V 1I2, then M :s::0. which yields Vs:

where AI3 and AI4 are positive and are related to
the G matrix. From the above two inequalities,
the following relationship is obtained:

where As=min(Aeg -2Az, A3Ae- AzA3)' In order for
17:S::O, the second term of Eq. (27) has to be

smaller than the first term. To see this, we go back

to Eq. (21) where the first term in the righthand

side can be estimated as

Hence, if Az is defined as

Az:S::J1z=+min(AegAi l
, AeAi l

)

=+min(Ag, I )AcAi l

which is a sufficient condition for V to become
negative semi-definite which is shown by the
following procedures. In Eq. (27), with the suffi­

cient condition,
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By the devised direct force controller, the interact­

ing forces between two arms are regulated to zero.
In this way, the dynamics of the two-arm system

can be decoupled. Also, for the closed-loop two­
arm system with two different type of input distur­

bances, a sufficient condition is derived for the

asymptotic stability and boundedness based on a
proposed Lyapunov function. If the Euclidean

norm of the coupled disturbing forces of the

system is upper-bounded by the norm of the states
weighted by derivative and proportional gains,

the stability of the system is guaranteed. Numeri­
cal examples show the validatity of the devised

controller.
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